Journal of Organometallic Chemistry, 184 (1980) 263–268 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIVITY OF DI-µ-CHLOROBIS[PENTACHLOROPHENYL-(TRIPHENYLPHOSPHINE)NICKEL(II)] WITH NEUTRAL BASES

J.M. CORONAS, G. MULLER, M. ROCAMORA and J. SALES

Department of Inorganic Chemistry, Faculty of Chemistry, University of Barcelona (Spain) (Received July 5th, 1979)

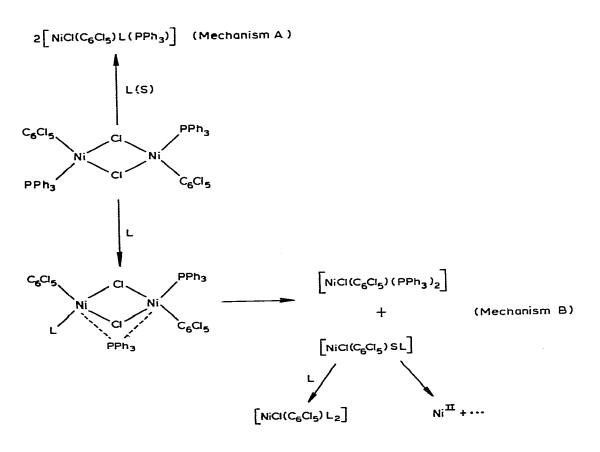
Summary

The action of pyridine, α -, β -, γ -picoline, 2,4-lutidine and PEt₃ on CCl₄ solutions of [NiCl(C₆Cl₅)(PPh₃)]₂ gives the new compounds [NiCl(C₆Cl₅)L(PPh₃)]. In the case of pyridine only, use of an excess of the base gives the compound [NiCl(C₆Cl₅)(py)₂]. The concomitant formation of [NiCl(C₆Cl₅)(PPh₃)₂] in all the reactions, and the formation of [NiCl(C₆Cl₅)(py)₂] suggest that replacement of PPh₃ by L occurs before cleavage of the dinuclear compound. The action of HCl on chloroform solutions of the new compounds indicates a greater stability for those containing only phosphines as ligands.

Introduction

Although extensive studies have been made of the dinuclear compounds of palladium and platinum, $[M_2X_2P_4]$ and their reactions with neutral bases L in which cleavage of the M—halogen bridges occurs with formation of mononuclear species $[MXLP_2]$, the analogous nickel compounds are little known. We describe below a study of the action of pyridine and its methyl derivatives on the dinuclear organometallic compound $[NiCl(C_6Cl_5)(PPh_3)]_2$. The reactions give the first known neutral organometallic compounds of nickel containing monodentate amines, the only analogous compounds previously reported being those containing bidentate amines, such as dipyridyl [1,2] *.

Results and discussion


The compounds [NiCl(C₆Cl₅)L(PPh₃)] were made by adding a stoichiometric amount of the appropiate base L, (L = pyridine (py), α -pic, β -pic, γ -pic (pic = picoline), 2,4-lutidine (lut) and PEt₃) to a CCl₄ solution of [NiCl(C₆Cl₅)-(PPh₃)]₂. Addition of an excess of neutral base gives the same compounds, except for pyridine, from which the compound containing two py groups,

^{*} Added in proof: The preparation of $[Ni(C_6F_5)_2(py)_2]$ has recently been reported [12].

[NiCl(C_6Cl_5)(py)₂], is also obtained. In all cases [NiCl(C_6Cl_5)(PPh₃)₂] and nickel(II) salts are also formed.

The formation of $[NiCl(C_5Cl_5)(PPh_3)_2]$ and salts of nickel(II), and the production of $[NiCl(C_6Cl_5)(py)_2]$ when an excess of pyridine is used cannot be explained in terms of the accepted mechanism for the cleavage of dinuclear complexes, which involves attack of the entering ligand and/or solvent (Scheme 1, mechanism A), and which would lead only to compounds of the type $[NiCl(C_6Cl_5)L(PPh_3)]$ [4]. Furthermore, $[NiCl(C_6Cl_5)(py)_2]$ cannot result from the subsequent replacement of PPh₃ by py in [NiCl(C_6Cl_5)(py)(PPh₃)], as such a reaction does not occur in the case of mononuclear complexes under the conditions used. On the other hand, formation of $[NiCl(C_6Cl_5)(PPh_3)_2]$ and salts of nickel(II) cannot be explained in terms of a solvent participation, because $[NiCl(C_6Cl_5)(PPh_3)]_2$ is fairly stable in CCl_4 (no decomposition is observed in 24 h). If the reaction is carried out in acetone, a solvent which itself causes decomposition of the dinuclear compound with formation of $[NiCl(C_6Cl_5)(PPh_3)_2]$ and salts of nickel(II) better yields of the compounds [NiCl(C₆Cl₅)L(PPh₃)], and smaller amounts of [NiCl(C₆Cl₅)(PPh₃)₂] are observed and it seem that in this case mechanism A is favoured by participation of the solvent.

SCHEME 1

The formation of $[NiCl(C_6Cl_5)(PPh_3)_2]$ leads us to propose an initial replacement of triphenylphosphine by L in the dinuclear species, and an immediate cleavage by PPh₃ (mechanism B). The species formed, $[NiCl(C_6Cl_5)SL]$ (possibly by participation of the solvent) gives nickel(II) salts, and $[NiCl(C_6Cl_5)L_2]$ if the formation of the latter is favoured, as it is in the case of pyridine because of the low solubility of $[NiCl(C_6Cl_5)(py)_2]$ in CCl_4 .

The two routes proposed must operate simultaneously, since as replacement of PPh₃ by PEt₃ does not take place in CCl₄, formation of [NiCl(C₆Cl₅)(PEt₃)-(PPh₃)] and the other mixed compounds containing amines can only proceed via mechanism A. If the reaction of the dinuclear complex with an excess of triethylphosphine is carried out in chloroform, a solvent in which replacement of PPh₃ by PEt₃ occurs [5], only [NiCl(C₆Cl₅)(PEt₃)₂] and nickel(II) salts are formed as products, since both [NiCl(C₆Cl₅)(PEt₃)(PPh₃)] formed via mechanism A, and [NiCl(C₆Cl₅)(PPh₃)₂] formed via mechanism B will undergo phosphine exchange.

Characterization

The new solids prepared are soluble in benzene, dichloromethane, chloroform and (except for [NiCl(C₆Cl₅)(py)₂]) carbon tetrachloride; but only slightly soluble in acetone and alcohol. They are air-stable as solids and in solution. Analytical data, melting temperatures and molecular weights are given in Table 1. Conductivity measurements in acetone $(10^{-4} M)$ at 18°C indicate that they are non-electrolytes (2–4 ohm⁻¹ cm² mol⁻¹). All of them are diamagnetic, thus indicating a square-planar geometry. The infrared spectra show the bands due to C₆Cl₅ [6], PPh₃ [7], PEt₃ [8], and coordinated amines [9]. Two bands assigned to the ν_{11} vibration of pyridine appear in the spectrum of solid [NiCl(C₆Cl₅)(py)₂], at 770 and 760 cm⁻¹. This seems to agree with a *cis* configuration [9].

Features of the PMR data given in Table 2 are the strong downfield shifts of the methyls of α -pic and that of the ortho position in 2,4-lut. The shifts are due to the paramagnetic effect of the central ion, and indicate that the nitrogencontaining ligand rings are perpendicular to the plane of the complex [10]. Analogous shifts are also observed for the ortho protons in the coordinated amines; the meta- and para-protons are more difficult to assign since they appear very near or overlap with the aromatic protons of triphenylphosphine.

The ortho-protons of py in [NiCl(C_6Cl_5)(py)₂] appear as a doublet centered at δ 9.1 ppm and J 5 Hz. The magnitude of the splitting is similar to that due to aromatic coupling observed for the free pyridine derivatives [11]. This indicates a *trans* configuration for the compound in solution in contrast with that deduced from IR evidence for the solid state. The product is too insoluble to give a satisfactory IR spectrum in the 700–800 cm⁻¹ region.

Passage of hydrogen chloride through the chloroform solutions of the new compounds causes decomposition, except for $[NiCl(C_6Cl_5)(PEt_3)(PPh_3)]$ which is recovered unchanged after 6 h. This is consistent with the greater stability of the pentachlorophenylnickel compounds containing phosphines compared with those containing nitrogen bases [2].

Compound	Analysis (Fo	Analysis (Found (calcd.) (%))	()		Decomposition temperature	Molecular
	0	н	z	ច		(10ur/8) Jugiam
[NICI(C ₆ Cl ₅)(Py) ₂]	38.2	1.9	6.4	41.5	210-212	505
	(38.30)	(1.97)	(5.58)	(42.40)		(201.6)
[NICI(C6Cl5)(py)(PPh3)]	51.4	2.8	2.0	30.2	217-220	080
	(50.92)	(2.94)	(2.04)	(31.05)		(684.8)
[NiCl(C ₆ Cl ₅)(<i>a</i> -pic)(PPh ₃)]	49.6	3.3	2.2	29.3	178-181	670
	(61.48)	(3.10)	(2,10)	(30.61)		(698,9)
[NiCl(C ₆ Cl ₅)(d-pic)(PPh ₃)]	49.5	3.3	2,2	30.1	208210	687
	(61.48)	(8.10)	(2.10)	(30.51)		(698,9)
[NiCl(C ₆ Cl ₅)(γ -pic)(PPh ₃)]	49.7	3,3	1.8	30.2	212214	690
	(51.84)	(3.10)	(2.10)	(30.51)		(698.9)
[NiCi(C ₆ Cl ₅)(2,4-lut)(PPh ₃)]	52.1	3.4	1.6	28.8	175-177	100
	(53.18)	(3.36)	(1,96)	(29.03)		(712.9)
[NiCl(C ₆ Cl ₅)(PEt ₃)(PPh ₃)]	48.2	4.1		28.9	165-168	748
	(49.73)	(4.14)		(29.42)		(723.8)

ANALYTICAL AND PHYSICAL DATA OF THE COMPOUNDS OBTAINED

TABLE 1

TABLE 2

PMR SPECTRA (δ, ppm)

Compounds	Nitrogen-containing ligand				
·	Methyl	H-ortho	H-meta	H-para	
[NiCl(C ₆ Cl ₅)(Py) ₂]		9.05-9.15	7.15	7.5	
[NiCl(C6Cl5)(Py)(PPh3)]		9.15			
[NiCl(C ₆ Cl ₅)(a-pic)(PPh ₃)]	3.75	9.3			
[NiCl(C6Cl5)(β-pic)(PPh3)]	2.25	9.2			
[NiCl(C6Cl5)(7-pic)(PPh3)]	2.25	9.1-9.2			
[NiCl(C ₆ Cl ₅)(2,4-lut)(PPh ₃)]	3.55 0-				
	2.25 p-				
	Free ligand				
pyridine		8.5	7,06	7.46	
α-picoline	2.55	8.5	7.1	7.45	
β-picoline	2.32	8.42	7.15	7.4	
γ-picoline	2,37	8.33	6.9		
2,4-lutidine	2.48 o-	8.45	6.93		
	2,22 p-				

Experimental

 $[NiCl(C_6Cl_5)(PPh_3)_2]$ and $[NiCl(C_6Cl_5)(PPh_3)]_2$ were prepared according to published methods [3]. Infrared spectra were recorded on a Beckman IR-20A spectrophotometer. PMR spectra were obtained on a Perkin—Elmer R12 spectrometer in CDCl_3 solutions, TMS was used as reference. Molecular weights were determined with benzene solutions at 60°C on a Knauer osmometer. Elemental analyses were carried out at the "Instituto de Química Organica de Catalunya".

Preparation of $[NiCl(C_{\epsilon}Cl_{5})(py)_{2}]$

A large excess of pyridine (3 ml) was added to a solution of $[NiCl(C_6Cl_5)-(PPh_3)]_2$ (0.5 g, 0.4 mmol) in CCl_4 (25 ml). The initially red solution rapidly became orange. It was cooled to -10° C and the $[NiCl(C_6Cl_5)(py)_2]$ which precipitated was filtered off. On concentration of the resulting solution $[NiCl(C_6Cl_5)(py)(PPh_3)]$ and $[NiCl(C_6Cl_5)(PPh_3)_2]$ separated out.

Preparation of $[NiCl(C_6Cl_5)L(PPh_3)]$ $L = py, \alpha$ -pic, β -pic, γ -pic, 2,4-lut and PEt_3

The stoichiometric amount of L (0.8 mmol) was added to a solution of $[NiCl(C_6Cl_5)(PPh_3)]_2$ (0.5 g, 0.4 mmol) in CCl_4 (25 ml). The initially red solution immediately changed to yellow. After concentrating, $[NiCl(C_6Cl_5)L_-(PPh_3)]$ was precipitated with alcohol (or acetone when L = PEt₃). The products were recrystallized from dichloromethane/ethanol. Yields were about 40%.

References

- 1 M. Uchino, K. Aszgi, A. Yamamoto and S. Ikeda, J. Organometal. Chem., 84 (1975) 93.
- 2 R.M. Ceder, J. Granell, G. Muller, O. Rossell and J. Sales, J. Organometal. Chem., 174 (1979) 115.
- 3 K. Mac Kinnon and B.O. West, Aust. J. Chem., 21 (1968) 2801.
- 4 F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, New York, Wiley, 1967.
- 5 Y. Nakamurz, K. Maruya and T. Mizokori, J. Organometal. Chem., 104 (1976) C5.
- 6 J. Casabo, J.M. Coronas and J. Sales, Inorg. Chim. Acta, 11 (1974) 5.
- 7 G.B. Deacon and J.H.S. Green, Spectrochim, Acta A, 24 (1968) 845.
- 8 J.H.S. Green, Spectrochim. Acta A, 24 (1968) 137.
- 9 M. Pfeffer, P. Braunstein and J. Dehand, Spectrochim. Acta A, 30 (1974) 331.
- 10 R.G. Miller, R.O. Stauffer, D.R. Fahey and D.R. Parnell, J. Amer. Chem. Soc., 92 (1970) 1511.
- 11 L.M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, London, Pergamon, 1969.
- 12 A. Arcas and P. Royo, Inorg. Chim. Acta, 31 (1978) 97.